Ergebnisse für *

Es wurden 2 Ergebnisse gefunden.

Zeige Ergebnisse 1 bis 2 von 2.

Sortieren

  1. Enhancing a Lexicon of Polarity Shifters through the Supervised Classification of Shifting Directions
    Erschienen: 2020
    Verlag:  Paris : European Language Resources Association

    The sentiment polarity of an expression (whether it is perceived as positive, negative or neutral) can be influenced by a number of phenomena, foremost among them negation. Apart from closed-class negation words like no, not or without, negation can... mehr

     

    The sentiment polarity of an expression (whether it is perceived as positive, negative or neutral) can be influenced by a number of phenomena, foremost among them negation. Apart from closed-class negation words like no, not or without, negation can also be caused by so-called polarity shifters. These are content words, such as verbs, nouns or adjectives, that shift polarities in their opposite direction, e. g. abandoned in “abandoned hope” or alleviate in “alleviate pain”. Many polarity shifters can affect both positive and negative polar expressions, shifting them towards the opposing polarity. However, other shifters are restricted to a single shifting direction. Recoup shifts negative to positive in “recoup your losses”, but does not affect the positive polarity of fortune in “recoup a fortune”. Existing polarity shifter lexica only specify whether a word can, in general, cause shifting, but they do not specify when this is limited to one shifting direction. To address this issue we introduce a supervised classifier that determines the shifting direction of shifters. This classifier uses both resource-driven features, such as WordNet relations, and data-driven features like in-context polarity conflicts. Using this classifier we enhance the largest available polarity shifter lexicon.

     

    Export in Literaturverwaltung
    Quelle: BASE Fachausschnitt Germanistik
    Sprache: Englisch
    Medientyp: Konferenzveröffentlichung
    Format: Online
    DDC Klassifikation: Sprache (400)
    Schlagworte: Negativer Polaritätsausdruck; Polarität; Natürliche Sprache; Klassifikation; Maschinelles Lernen; Lexikalische Semantik
    Lizenz:

    creativecommons.org/licenses/by-nc/4.0/ ; info:eu-repo/semantics/openAccess

  2. Automatic generation of lexica for sentiment polarity shifters
    Erschienen: 2020
    Verlag:  Cambridge : Cambridge University Press

    Alleviating pain is good and abandoning hope is bad. We instinctively understand how words like alleviate and abandon affect the polarity of a phrase, inverting or weakening it. When these words are content words, such as verbs, nouns, and... mehr

     

    Alleviating pain is good and abandoning hope is bad. We instinctively understand how words like alleviate and abandon affect the polarity of a phrase, inverting or weakening it. When these words are content words, such as verbs, nouns, and adjectives, we refer to them as polarity shifters. Shifters are a frequent occurrence in human language and an important part of successfully modeling negation in sentiment analysis; yet research on negation modeling has focused almost exclusively on a small handful of closed-class negation words, such as not, no, and without. A major reason for this is that shifters are far more lexically diverse than negation words, but no resources exist to help identify them. We seek to remedy this lack of shifter resources by introducing a large lexicon of polarity shifters that covers English verbs, nouns, and adjectives. Creating the lexicon entirely by hand would be prohibitively expensive. Instead, we develop a bootstrapping approach that combines automatic classification with human verification to ensure the high quality of our lexicon while reducing annotation costs by over 70%. Our approach leverages a number of linguistic insights; while some features are based on textual patterns, others use semantic resources or syntactic relatedness. The created lexicon is evaluated both on a polarity shifter gold standard and on a polarity classification task.

     

    Export in Literaturverwaltung   RIS-Format
      BibTeX-Format
    Quelle: BASE Fachausschnitt Germanistik
    Sprache: Englisch
    Medientyp: Aufsatz aus einer Zeitschrift
    Format: Online
    DDC Klassifikation: Sprache (400)
    Schlagworte: Negativer Polaritätsausdruck; Polarität; Lexikalische Semantik; Klassifikation; Maschinelles Lernen; Lexikon
    Lizenz:

    creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess